- Регистрация
- 27 Авг 2018
- Сообщения
- 37,232
- Реакции
- 524,021
- Тема Автор Вы автор данного материала? |
- #1
- Frame big data analysis problems as Apache Spark scripts
- Develop distributed code using the Scala programming language
- Optimize Spark jobs through partitioning, caching, and other techniques
- Build, deploy, and run Spark scripts on Hadoop clusters
- Process continual streams of data with Spark Streaming
- Transform structured data using SparkSQL, DataSets, and DataFrames
- Traverse and analyze graph structures using GraphX
- Analyze massive data set with Machine Learning on Spark
- Some prior programming or scripting experience is required. A crash course in Scala is included, but you need to know the fundamentals of programming in order to pick it up.
- You will need a desktop PC and an Internet connection. The course is created with Windows in mind, but users comfortable with MacOS or Linux can use the same tools.
- The software needed for this course is freely available, and I'll walk you through downloading and installing it.
New! Completely updated and re-recorded for Spark 3, IntelliJ, Structured Streaming, and a stronger focus on the DataSet API.
“Big data" analysis is a hot and highly valuable skill – and this course will teach you the hottest technology in big data: Apache Spark. Employers including Amazon, EBay, NASA JPL, and Yahoo all use Spark to quickly extract meaning from massive data sets across a fault-tolerant Hadoop cluster. You'll learn those same techniques, using your own Windows system right at home. It's easier than you might think, and you'll be learning from an ex-engineer and senior manager from Amazon and IMDb.
Spark works best when using the Scala programming language, and this course includes a crash-course in Scala to get you up to speed quickly. For those more familiar with Python however, a Python version of this class is also available: "Taming Big Data with Apache Spark and Python - Hands On".
Learn and master the art of framing data analysis problems as Spark problems through over 20 hands-on examples, and then scale them up to run on cloud computing services in this course.
- Learn the concepts of Spark's Resilient Distributed Datasets, DataFrames, and Datasets.
- Get a crash course in the Scala programming language
- Develop and run Spark jobs quickly using Scala, IntelliJ, and SBT
- Translate complex analysis problems into iterative or multi-stage Spark scripts
- Scale up to larger data sets using Amazon's Elastic MapReduce service
- Understand how Hadoop YARN distributes Spark across computing clusters
- Practice using other Spark technologies, like Spark SQL, DataFrames, DataSets, Spark Streaming, Machine Learning, and GraphX
We'll have some fun along the way. You'll get warmed up with some simple examples of using Spark to analyze movie ratings data and text in a book. Once you've got the basics under your belt, we'll move to some more complex and interesting tasks. We'll use a million movie ratings to find movies that are similar to each other, and you might even discover some new movies you might like in the process! We'll analyze a social graph of superheroes, and learn who the most “popular" superhero is – and develop a system to find “degrees of separation" between superheroes. Are all Marvel superheroes within a few degrees of being connected to SpiderMan? You'll find the answer.
This course is very hands-on; you'll spend most of your time following along with the instructor as we write, analyze, and run real code together – both on your own system, and in the cloud using Amazon's Elastic MapReduce service. over 8 hours of video content is included, with over 20 real examples of increasing complexity you can build, run and study yourself. Move through them at your own pace, on your own schedule. The course wraps up with an overview of other Spark-based technologies, including Spark SQL, Spark Streaming, and GraphX.
Enroll now, and enjoy the course!
"I studied Spark for the first time using Frank's course "Apache Spark 2 with Scala - Hands On with Big Data!". It was a great starting point for me, gaining knowledge in Scala and most importantly practical examples of Spark applications. It gave me an understanding of all the relevant Spark core concepts, RDDs, Dataframes & Datasets, Spark Streaming, AWS EMR. Within a few months of completion, I used the knowledge gained from the course to propose in my current company to work primarily on Spark applications. Since then I have continued to work with Spark. I would highly recommend any of Franks courses as he simplifies concepts well and his teaching manner is easy to follow and continue with! " - Joey Faherty
Who this course is for
- If you have no previous programming or scripting experience, you'll want to take an introductory programming course first.
- Software engineers who want to expand their skills into the world of big data processing on a cluster
DOWNLOAD: